// Copyright (c) 2015-present Mattermost, Inc. All Rights Reserved. // See LICENSE.txt for license information. // This is a modified version, the original copyright was: Copyright (c) 2011 // The Go Authors. package imgutils // This contains a portion of Go's image/go library, modified to count the number of frames in a gif without loading // the entire image into memory. import ( "bufio" "compress/lzw" "encoding/binary" "errors" "fmt" "io" ) var ( errNotEnough = errors.New("gif: not enough image data") errTooMuch = errors.New("gif: too much image data") ) // If the io.Reader does not also have ReadByte, then decode will introduce its own buffering. type reader interface { io.Reader io.ByteReader } // Masks etc. const ( // Fields. fColorTable = 1 << 7 fColorTableBitsMask = 7 // Graphic control flags. gcTransparentColorSet = 1 << 0 gcDisposalMethodMask = 7 << 2 ) // Disposal Methods. const ( DisposalNone = 0x01 DisposalBackground = 0x02 DisposalPrevious = 0x03 ) // Section indicators. const ( sExtension = 0x21 sImageDescriptor = 0x2C sTrailer = 0x3B ) // Extensions. const ( eText = 0x01 // Plain Text eGraphicControl = 0xF9 // Graphic Control eComment = 0xFE // Comment eApplication = 0xFF // Application ) func readFull(r io.Reader, b []byte) error { _, err := io.ReadFull(r, b) if err == io.EOF { err = io.ErrUnexpectedEOF } return err } func readByte(r io.ByteReader) (byte, error) { b, err := r.ReadByte() if err == io.EOF { err = io.ErrUnexpectedEOF } return b, err } // decoder is the type used to decode a GIF file. type decoder struct { r reader // From header. vers string width int height int loopCount int delayTime int backgroundIndex byte disposalMethod byte // From image descriptor. imageFields byte // From graphics control. transparentIndex byte hasTransparentIndex bool // Computed. hasGlobalColorTable bool // Used when decoding. imageCount int tmp [1024]byte // must be at least 768 so we can read color table } // blockReader parses the block structure of GIF image data, which comprises // (n, (n bytes)) blocks, with 1 <= n <= 255. It is the reader given to the // LZW decoder, which is thus immune to the blocking. After the LZW decoder // completes, there will be a 0-byte block remaining (0, ()), which is // consumed when checking that the blockReader is exhausted. // // To avoid the allocation of a bufio.Reader for the lzw Reader, blockReader // implements io.ReadByte and buffers blocks into the decoder's "tmp" buffer. type blockReader struct { d *decoder i, j uint8 // d.tmp[i:j] contains the buffered bytes err error } func (b *blockReader) fill() { if b.err != nil { return } b.j, b.err = readByte(b.d.r) if b.j == 0 && b.err == nil { b.err = io.EOF } if b.err != nil { return } b.i = 0 b.err = readFull(b.d.r, b.d.tmp[:b.j]) if b.err != nil { b.j = 0 } } func (b *blockReader) ReadByte() (byte, error) { if b.i == b.j { b.fill() if b.err != nil { return 0, b.err } } c := b.d.tmp[b.i] b.i++ return c, nil } // blockReader must implement io.Reader, but its Read shouldn't ever actually // be called in practice. The compress/lzw package will only call ReadByte. func (b *blockReader) Read(p []byte) (int, error) { if len(p) == 0 || b.err != nil { return 0, b.err } if b.i == b.j { b.fill() if b.err != nil { return 0, b.err } } n := copy(p, b.d.tmp[b.i:b.j]) b.i += uint8(n) return n, nil } // close primarily detects whether or not a block terminator was encountered // after reading a sequence of data sub-blocks. It allows at most one trailing // sub-block worth of data. I.e., if some number of bytes exist in one sub-block // following the end of LZW data, the very next sub-block must be the block // terminator. If the very end of LZW data happened to fill one sub-block, at // most one more sub-block of length 1 may exist before the block-terminator. // These accommodations allow us to support GIFs created by less strict encoders. // See https://golang.org/issue/16146. func (b *blockReader) close() error { if b.err == io.EOF { // A clean block-sequence terminator was encountered while reading. return nil } else if b.err != nil { // Some other error was encountered while reading. return b.err } if b.i == b.j { // We reached the end of a sub block reading LZW data. We'll allow at // most one more sub block of data with a length of 1 byte. b.fill() if b.err == io.EOF { return nil } else if b.err != nil { return b.err } else if b.j > 1 { return errTooMuch } } // Part of a sub-block remains buffered. We expect that the next attempt to // buffer a sub-block will reach the block terminator. b.fill() if b.err == io.EOF { return nil } else if b.err != nil { return b.err } return errTooMuch } // decode reads a GIF image from r and stores the result in d. func (d *decoder) decode(r io.Reader, configOnly bool) error { // Add buffering if r does not provide ReadByte. if rr, ok := r.(reader); ok { d.r = rr } else { d.r = bufio.NewReader(r) } d.loopCount = -1 err := d.readHeaderAndScreenDescriptor() if err != nil { return err } if configOnly { return nil } for { c, err := readByte(d.r) if err != nil { return fmt.Errorf("gif: reading frames: %v", err) } switch c { case sExtension: if err = d.readExtension(); err != nil { return err } case sImageDescriptor: if err = d.readImageDescriptor(); err != nil { return err } case sTrailer: if d.imageCount == 0 { return fmt.Errorf("gif: missing image data") } return nil default: return fmt.Errorf("gif: unknown block type: 0x%.2x", c) } } } func (d *decoder) readHeaderAndScreenDescriptor() error { err := readFull(d.r, d.tmp[:13]) if err != nil { return fmt.Errorf("gif: reading header: %v", err) } d.vers = string(d.tmp[:6]) if d.vers != "GIF87a" && d.vers != "GIF89a" { return fmt.Errorf("gif: can't recognize format %q", d.vers) } d.width = int(d.tmp[6]) + int(d.tmp[7])<<8 d.height = int(d.tmp[8]) + int(d.tmp[9])<<8 if fields := d.tmp[10]; fields&fColorTable != 0 { d.backgroundIndex = d.tmp[11] // readColorTable overwrites the contents of d.tmp, but that's OK. if err = d.readColorTable(fields); err != nil { return err } d.hasGlobalColorTable = true } // d.tmp[12] is the Pixel Aspect Ratio, which is ignored. return nil } func (d *decoder) readColorTable(fields byte) error { n := 1 << (1 + uint(fields&fColorTableBitsMask)) err := readFull(d.r, d.tmp[:3*n]) if err != nil { return fmt.Errorf("gif: reading color table: %s", err) } return nil } func (d *decoder) readExtension() error { extension, err := readByte(d.r) if err != nil { return fmt.Errorf("gif: reading extension: %v", err) } size := 0 switch extension { case eText: size = 13 case eGraphicControl: return d.readGraphicControl() case eComment: // nothing to do but read the data. case eApplication: b, err := readByte(d.r) if err != nil { return fmt.Errorf("gif: reading extension: %v", err) } // The spec requires size be 11, but Adobe sometimes uses 10. size = int(b) default: return fmt.Errorf("gif: unknown extension 0x%.2x", extension) } if size > 0 { if err := readFull(d.r, d.tmp[:size]); err != nil { return fmt.Errorf("gif: reading extension: %v", err) } } // Application Extension with "NETSCAPE2.0" as string and 1 in data means // this extension defines a loop count. if extension == eApplication && string(d.tmp[:size]) == "NETSCAPE2.0" { n, err := d.readBlock() if err != nil { return fmt.Errorf("gif: reading extension: %v", err) } if n == 0 { return nil } if n == 3 && d.tmp[0] == 1 { d.loopCount = int(d.tmp[1]) | int(d.tmp[2])<<8 } } for { n, err := d.readBlock() if err != nil { return fmt.Errorf("gif: reading extension: %v", err) } if n == 0 { return nil } } } func (d *decoder) readGraphicControl() error { if err := readFull(d.r, d.tmp[:6]); err != nil { return fmt.Errorf("gif: can't read graphic control: %s", err) } if d.tmp[0] != 4 { return fmt.Errorf("gif: invalid graphic control extension block size: %d", d.tmp[0]) } flags := d.tmp[1] d.disposalMethod = (flags & gcDisposalMethodMask) >> 2 d.delayTime = int(d.tmp[2]) | int(d.tmp[3])<<8 if flags&gcTransparentColorSet != 0 { d.transparentIndex = d.tmp[4] d.hasTransparentIndex = true } if d.tmp[5] != 0 { return fmt.Errorf("gif: invalid graphic control extension block terminator: %d", d.tmp[5]) } return nil } func (d *decoder) readImageDescriptor() error { w, h, err := d.readImageDimensionsFromDescriptor() if err != nil { return err } useLocalColorTable := d.imageFields&fColorTable != 0 if useLocalColorTable { if err = d.readColorTable(d.imageFields); err != nil { return err } } else if !d.hasGlobalColorTable { return errors.New("gif: no color table") } litWidth, err := readByte(d.r) if err != nil { return fmt.Errorf("gif: reading image data: %v", err) } if litWidth < 2 || litWidth > 8 { return fmt.Errorf("gif: pixel size in decode out of range: %d", litWidth) } // A wonderfully Go-like piece of magic. br := &blockReader{d: d} lzwr := lzw.NewReader(br, lzw.LSB, int(litWidth)) defer lzwr.Close() if _, err := io.Copy(io.Discard, io.LimitReader(lzwr, int64(w*h))); err != nil { if err != io.ErrUnexpectedEOF { return fmt.Errorf("gif: reading image data: %v", err) } return errNotEnough } // In theory, both lzwr and br should be exhausted. Reading from them // should yield (0, io.EOF). // // The spec (Appendix F - Compression), says that "An End of // Information code... must be the last code output by the encoder // for an image". In practice, though, giflib (a widely used C // library) does not enforce this, so we also accept lzwr returning // io.ErrUnexpectedEOF (meaning that the encoded stream hit io.EOF // before the LZW decoder saw an explicit end code), provided that // the io.ReadFull call above successfully read len(m.Pix) bytes. // See https://golang.org/issue/9856 for an example GIF. if n, err := lzwr.Read(d.tmp[256:257]); n != 0 || (err != io.EOF && err != io.ErrUnexpectedEOF) { if err != nil { return fmt.Errorf("gif: reading image data: %v", err) } return errTooMuch } // In practice, some GIFs have an extra byte in the data sub-block // stream, which we ignore. See https://golang.org/issue/16146. if err := br.close(); err == errTooMuch { return errTooMuch } else if err != nil { return fmt.Errorf("gif: reading image data: %v", err) } d.imageCount += 1 return nil } func (d *decoder) readImageDimensionsFromDescriptor() (int, int, error) { if err := readFull(d.r, d.tmp[:9]); err != nil { return 0, 0, fmt.Errorf("gif: can't read image descriptor: %s", err) } left := int(d.tmp[0]) + int(d.tmp[1])<<8 top := int(d.tmp[2]) + int(d.tmp[3])<<8 width := int(d.tmp[4]) + int(d.tmp[5])<<8 height := int(d.tmp[6]) + int(d.tmp[7])<<8 d.imageFields = d.tmp[8] // The GIF89a spec, Section 20 (Image Descriptor) says: "Each image must // fit within the boundaries of the Logical Screen, as defined in the // Logical Screen Descriptor." // // This is conceptually similar to testing // frameBounds := image.Rect(left, top, left+width, top+height) // imageBounds := image.Rect(0, 0, d.width, d.height) // if !frameBounds.In(imageBounds) { etc } // but the semantics of the Go image.Rectangle type is that r.In(s) is true // whenever r is an empty rectangle, even if r.Min.X > s.Max.X. Here, we // want something stricter. // // Note that, by construction, left >= 0 && top >= 0, so we only have to // explicitly compare frameBounds.Max (left+width, top+height) against // imageBounds.Max (d.width, d.height) and not frameBounds.Min (left, top) // against imageBounds.Min (0, 0). if left+width > d.width || top+height > d.height { return 0, 0, errors.New("gif: frame bounds larger than image bounds") } return width, height, nil } func (d *decoder) readBlock() (int, error) { n, err := readByte(d.r) if n == 0 || err != nil { return 0, err } if err := readFull(d.r, d.tmp[:n]); err != nil { return 0, err } return int(n), nil } func CountGIFFrames(r io.Reader) (int, error) { var d decoder if err := d.decode(r, false); err != nil { return -1, err } return d.imageCount, nil } func GenGIFData(width, height uint16, nFrames int) []byte { header := []byte{ 'G', 'I', 'F', '8', '9', 'a', // header 0, 0, 0, 0, // width and height 128, 0, 0, // other header information 0, 0, 0, 1, 1, 1, // color table } binary.LittleEndian.PutUint16(header[6:], width) binary.LittleEndian.PutUint16(header[8:], height) frame := []byte{ 0x2c, // block introducer 0, 0, 0, 0, 1, 0, 1, 0, // position and dimensions of the frame 0, // other frame information 0x2, 0x2, 0x4c, 0x1, 0, // encoded pixel data } trailer := []byte{0x3b} gifData := header for range nFrames { gifData = append(gifData, frame...) } gifData = append(gifData, trailer...) return gifData }