mattermost-community-enterp.../vendor/github.com/blevesearch/bleve/v2/fusion/rrf.go
Claude ec1f89217a Merge: Complete Mattermost Server with Community Enterprise
Full Mattermost server source with integrated Community Enterprise features.
Includes vendor directory for offline/air-gapped builds.

Structure:
- enterprise-impl/: Enterprise feature implementations
- enterprise-community/: Init files that register implementations
- enterprise/: Bridge imports (community_imports.go)
- vendor/: All dependencies for offline builds

Build (online):
  go build ./cmd/mattermost

Build (offline/air-gapped):
  go build -mod=vendor ./cmd/mattermost

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-17 23:59:07 +09:00

144 lines
4.0 KiB
Go

// Copyright (c) 2025 Couchbase, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fusion
import (
"fmt"
"github.com/blevesearch/bleve/v2/search"
)
// formatRRFMessage builds the explanation string for a single component of the
// Reciprocal Rank Fusion calculation.
func formatRRFMessage(weight float64, rank int, rankConstant int) string {
return fmt.Sprintf("rrf score (weight=%.3f, rank=%d, rank_constant=%d), normalized score of", weight, rank, rankConstant)
}
// ReciprocalRankFusion applies Reciprocal Rank Fusion across the primary FTS
// results and each KNN sub-query. Ranks are limited to `windowSize` per source,
// weighted, and combined into a single fused score, with optional explanation
// details.
func ReciprocalRankFusion(hits search.DocumentMatchCollection, weights []float64, rankConstant int, windowSize int, numKNNQueries int, explain bool) *FusionResult {
nHits := len(hits)
if nHits == 0 || windowSize == 0 {
return &FusionResult{
Hits: search.DocumentMatchCollection{},
Total: 0,
MaxScore: 0.0,
}
}
limit := min(nHits, windowSize)
// precompute rank+scores to prevent additional division ops later
rankReciprocals := make([]float64, limit)
for i := range rankReciprocals {
rankReciprocals[i] = 1.0 / float64(rankConstant+i+1)
}
// init explanations if required
var fusionExpl map[*search.DocumentMatch][]*search.Explanation
if explain {
fusionExpl = make(map[*search.DocumentMatch][]*search.Explanation, nHits)
}
// The code here mainly deals with obtaining rank/score for fts hits.
// First sort hits by score
sortDocMatchesByScore(hits)
// Calculate fts rank+scores
ftsWeight := weights[0]
for i := 0; i < nHits; i++ {
if i < windowSize {
hit := hits[i]
// No fts scores from this hit onwards, break loop
if hit.Score == 0.0 {
break
}
contrib := ftsWeight * rankReciprocals[i]
hit.Score = contrib
if explain {
expl := getFusionExplAt(
hit,
0,
contrib,
formatRRFMessage(ftsWeight, i+1, rankConstant),
)
fusionExpl[hit] = append(fusionExpl[hit], expl)
}
} else {
// These FTS hits are not counted in the results, so set to 0
hits[i].Score = 0.0
}
}
// Code from here is to calculate knn ranks and scores
// iterate over each knn query and calculate knn rank+scores
for queryIdx := 0; queryIdx < numKNNQueries; queryIdx++ {
knnWeight := weights[queryIdx+1]
// Sorts hits in decreasing order of hit.ScoreBreakdown[i]
sortDocMatchesByBreakdown(hits, queryIdx)
for i := 0; i < nHits; i++ {
// break if score breakdown doesn't exist (sort function puts these hits at the end)
// or if we go past the windowSize
_, scoreBreakdownExists := scoreBreakdownForQuery(hits[i], queryIdx)
if i >= windowSize || !scoreBreakdownExists {
break
}
hit := hits[i]
contrib := knnWeight * rankReciprocals[i]
hit.Score += contrib
if explain {
expl := getFusionExplAt(
hit,
queryIdx+1,
contrib,
formatRRFMessage(knnWeight, i+1, rankConstant),
)
fusionExpl[hit] = append(fusionExpl[hit], expl)
}
}
}
var maxScore float64
for _, hit := range hits {
if explain {
finalizeFusionExpl(hit, fusionExpl[hit])
}
hit.ScoreBreakdown = nil
if hit.Score > maxScore {
maxScore = hit.Score
}
}
sortDocMatchesByScore(hits)
if nHits > windowSize {
hits = hits[:windowSize]
}
return &FusionResult{
Hits: hits,
Total: uint64(len(hits)),
MaxScore: maxScore,
}
}