Full Mattermost server source with integrated Community Enterprise features. Includes vendor directory for offline/air-gapped builds. Structure: - enterprise-impl/: Enterprise feature implementations - enterprise-community/: Init files that register implementations - enterprise/: Bridge imports (community_imports.go) - vendor/: All dependencies for offline builds Build (online): go build ./cmd/mattermost Build (offline/air-gapped): go build -mod=vendor ./cmd/mattermost 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
165 lines
4.3 KiB
Go
165 lines
4.3 KiB
Go
// Copyright (c) 2025 Couchbase, Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package fusion
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"github.com/blevesearch/bleve/v2/search"
|
|
)
|
|
|
|
// formatRSFMessage builds the explanation string associated with a single
|
|
// component of the Relative Score Fusion calculation.
|
|
func formatRSFMessage(weight float64, normalizedScore float64, minScore float64, maxScore float64) string {
|
|
return fmt.Sprintf("rsf score (weight=%.3f, normalized=%.6f, min=%.6f, max=%.6f), normalized score of",
|
|
weight, normalizedScore, minScore, maxScore)
|
|
}
|
|
|
|
// RelativeScoreFusion normalizes the best-scoring documents from the primary
|
|
// FTS query and each KNN query, scales those normalized values by the supplied
|
|
// weights, and combines them into a single fused score. Only the top
|
|
// `windowSize` documents per source are considered, and explanations are
|
|
// materialized lazily when requested.
|
|
func RelativeScoreFusion(hits search.DocumentMatchCollection, weights []float64, windowSize int, numKNNQueries int, explain bool) *FusionResult {
|
|
nHits := len(hits)
|
|
if nHits == 0 || windowSize == 0 {
|
|
return &FusionResult{
|
|
Hits: search.DocumentMatchCollection{},
|
|
Total: 0,
|
|
MaxScore: 0.0,
|
|
}
|
|
}
|
|
|
|
// init explanations if required
|
|
var fusionExpl map[*search.DocumentMatch][]*search.Explanation
|
|
if explain {
|
|
fusionExpl = make(map[*search.DocumentMatch][]*search.Explanation, nHits)
|
|
}
|
|
|
|
// Code here for calculating fts results
|
|
// Sort by fts scores
|
|
sortDocMatchesByScore(hits)
|
|
|
|
// ftsLimit holds the total number of fts hits to consider for rsf
|
|
ftsLimit := 0
|
|
for _, hit := range hits {
|
|
if hit.Score == 0.0 {
|
|
break
|
|
}
|
|
ftsLimit++
|
|
}
|
|
ftsLimit = min(ftsLimit, windowSize)
|
|
|
|
// calculate fts scores
|
|
if ftsLimit > 0 {
|
|
max := hits[0].Score
|
|
min := hits[ftsLimit-1].Score
|
|
denom := max - min
|
|
weight := weights[0]
|
|
|
|
for i := 0; i < ftsLimit; i++ {
|
|
hit := hits[i]
|
|
norm := 1.0
|
|
if denom > 0 {
|
|
norm = (hit.Score - min) / denom
|
|
}
|
|
contrib := weight * norm
|
|
if explain {
|
|
expl := getFusionExplAt(
|
|
hit,
|
|
0,
|
|
norm,
|
|
formatRSFMessage(weight, norm, min, max),
|
|
)
|
|
fusionExpl[hit] = append(fusionExpl[hit], expl)
|
|
}
|
|
hit.Score = contrib
|
|
}
|
|
for i := ftsLimit; i < nHits; i++ {
|
|
// These FTS hits are not counted in the results, so set to 0
|
|
hits[i].Score = 0.0
|
|
}
|
|
}
|
|
|
|
// Code from here is for calculating knn scores
|
|
for queryIdx := 0; queryIdx < numKNNQueries; queryIdx++ {
|
|
sortDocMatchesByBreakdown(hits, queryIdx)
|
|
|
|
// knnLimit holds the total number of knn hits retrieved for a specific knn query
|
|
knnLimit := 0
|
|
for _, hit := range hits {
|
|
if _, ok := scoreBreakdownForQuery(hit, queryIdx); !ok {
|
|
break
|
|
}
|
|
knnLimit++
|
|
}
|
|
knnLimit = min(knnLimit, windowSize)
|
|
|
|
// if limit is 0, skip calculating
|
|
if knnLimit == 0 {
|
|
continue
|
|
}
|
|
|
|
max, _ := scoreBreakdownForQuery(hits[0], queryIdx)
|
|
min, _ := scoreBreakdownForQuery(hits[knnLimit-1], queryIdx)
|
|
denom := max - min
|
|
weight := weights[queryIdx+1]
|
|
|
|
for i := 0; i < knnLimit; i++ {
|
|
hit := hits[i]
|
|
score, _ := scoreBreakdownForQuery(hit, queryIdx)
|
|
norm := 1.0
|
|
if denom > 0 {
|
|
norm = (score - min) / denom
|
|
}
|
|
contrib := weight * norm
|
|
if explain {
|
|
expl := getFusionExplAt(
|
|
hit,
|
|
queryIdx+1,
|
|
norm,
|
|
formatRSFMessage(weight, norm, min, max),
|
|
)
|
|
fusionExpl[hit] = append(fusionExpl[hit], expl)
|
|
}
|
|
hit.Score += contrib
|
|
}
|
|
}
|
|
|
|
// Finalize scores
|
|
var maxScore float64
|
|
for _, hit := range hits {
|
|
if explain {
|
|
finalizeFusionExpl(hit, fusionExpl[hit])
|
|
}
|
|
if hit.Score > maxScore {
|
|
maxScore = hit.Score
|
|
}
|
|
hit.ScoreBreakdown = nil
|
|
}
|
|
|
|
sortDocMatchesByScore(hits)
|
|
|
|
if nHits > windowSize {
|
|
hits = hits[:windowSize]
|
|
}
|
|
|
|
return &FusionResult{
|
|
Hits: hits,
|
|
Total: uint64(len(hits)),
|
|
MaxScore: maxScore,
|
|
}
|
|
}
|