mattermost-community-enterp.../vendor/github.com/blevesearch/bleve/v2/fusion/rsf.go
Claude ec1f89217a Merge: Complete Mattermost Server with Community Enterprise
Full Mattermost server source with integrated Community Enterprise features.
Includes vendor directory for offline/air-gapped builds.

Structure:
- enterprise-impl/: Enterprise feature implementations
- enterprise-community/: Init files that register implementations
- enterprise/: Bridge imports (community_imports.go)
- vendor/: All dependencies for offline builds

Build (online):
  go build ./cmd/mattermost

Build (offline/air-gapped):
  go build -mod=vendor ./cmd/mattermost

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-17 23:59:07 +09:00

165 lines
4.3 KiB
Go

// Copyright (c) 2025 Couchbase, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fusion
import (
"fmt"
"github.com/blevesearch/bleve/v2/search"
)
// formatRSFMessage builds the explanation string associated with a single
// component of the Relative Score Fusion calculation.
func formatRSFMessage(weight float64, normalizedScore float64, minScore float64, maxScore float64) string {
return fmt.Sprintf("rsf score (weight=%.3f, normalized=%.6f, min=%.6f, max=%.6f), normalized score of",
weight, normalizedScore, minScore, maxScore)
}
// RelativeScoreFusion normalizes the best-scoring documents from the primary
// FTS query and each KNN query, scales those normalized values by the supplied
// weights, and combines them into a single fused score. Only the top
// `windowSize` documents per source are considered, and explanations are
// materialized lazily when requested.
func RelativeScoreFusion(hits search.DocumentMatchCollection, weights []float64, windowSize int, numKNNQueries int, explain bool) *FusionResult {
nHits := len(hits)
if nHits == 0 || windowSize == 0 {
return &FusionResult{
Hits: search.DocumentMatchCollection{},
Total: 0,
MaxScore: 0.0,
}
}
// init explanations if required
var fusionExpl map[*search.DocumentMatch][]*search.Explanation
if explain {
fusionExpl = make(map[*search.DocumentMatch][]*search.Explanation, nHits)
}
// Code here for calculating fts results
// Sort by fts scores
sortDocMatchesByScore(hits)
// ftsLimit holds the total number of fts hits to consider for rsf
ftsLimit := 0
for _, hit := range hits {
if hit.Score == 0.0 {
break
}
ftsLimit++
}
ftsLimit = min(ftsLimit, windowSize)
// calculate fts scores
if ftsLimit > 0 {
max := hits[0].Score
min := hits[ftsLimit-1].Score
denom := max - min
weight := weights[0]
for i := 0; i < ftsLimit; i++ {
hit := hits[i]
norm := 1.0
if denom > 0 {
norm = (hit.Score - min) / denom
}
contrib := weight * norm
if explain {
expl := getFusionExplAt(
hit,
0,
norm,
formatRSFMessage(weight, norm, min, max),
)
fusionExpl[hit] = append(fusionExpl[hit], expl)
}
hit.Score = contrib
}
for i := ftsLimit; i < nHits; i++ {
// These FTS hits are not counted in the results, so set to 0
hits[i].Score = 0.0
}
}
// Code from here is for calculating knn scores
for queryIdx := 0; queryIdx < numKNNQueries; queryIdx++ {
sortDocMatchesByBreakdown(hits, queryIdx)
// knnLimit holds the total number of knn hits retrieved for a specific knn query
knnLimit := 0
for _, hit := range hits {
if _, ok := scoreBreakdownForQuery(hit, queryIdx); !ok {
break
}
knnLimit++
}
knnLimit = min(knnLimit, windowSize)
// if limit is 0, skip calculating
if knnLimit == 0 {
continue
}
max, _ := scoreBreakdownForQuery(hits[0], queryIdx)
min, _ := scoreBreakdownForQuery(hits[knnLimit-1], queryIdx)
denom := max - min
weight := weights[queryIdx+1]
for i := 0; i < knnLimit; i++ {
hit := hits[i]
score, _ := scoreBreakdownForQuery(hit, queryIdx)
norm := 1.0
if denom > 0 {
norm = (score - min) / denom
}
contrib := weight * norm
if explain {
expl := getFusionExplAt(
hit,
queryIdx+1,
norm,
formatRSFMessage(weight, norm, min, max),
)
fusionExpl[hit] = append(fusionExpl[hit], expl)
}
hit.Score += contrib
}
}
// Finalize scores
var maxScore float64
for _, hit := range hits {
if explain {
finalizeFusionExpl(hit, fusionExpl[hit])
}
if hit.Score > maxScore {
maxScore = hit.Score
}
hit.ScoreBreakdown = nil
}
sortDocMatchesByScore(hits)
if nHits > windowSize {
hits = hits[:windowSize]
}
return &FusionResult{
Hits: hits,
Total: uint64(len(hits)),
MaxScore: maxScore,
}
}